Mark O. Cuthbert, Research Fellow & Lecturer in Groundwater Science, Cardiff University, Tom Gleeson, University of Victoria, and Kevin M. Befus, Assistant professor, University of Wyoming conducted a study in which they determined that underground water, source for billions, could take more than a century to respond fully to climate change.
Groundwater is the biggest store of accessible freshwater in the world, providing billions of people with water for drinking and crop irrigation. That’s all despite the fact that most will never see groundwater at its source – it’s stored naturally below ground within the Earth’s pores and cracks.
While climate change makes dramatic changes to weather and ecosystems on the surface, the impact on the world’s groundwater is likely to be delayed, representing a challenge for future generations.
Groundwater stores are replenished by rainfall at the surface in a process known as “recharge”. Unless intercepted by human-made pumps, this water eventually flows by gravity to “discharge” in streams, lakes, springs, wetlands and the ocean. A balance is naturally maintained between rates of groundwater recharge and discharge, and the amount of water stored underground.
Groundwater discharge provides consistent flows of freshwater to ecosystems, providing a reliable water source which helped early human societies survive and evolve.
When changes in climate or land use affect the rate of groundwater recharge, the depths of water tables and rates of groundwater discharge must also change to find a new balance.
The time it takes for this new equilibrium to be found – known as the groundwater response time – ranges from months to tens of thousands of years, depending on the hydraulic properties of the subsurface and how connected groundwater is to changes at the land surface.
Estimates of response times for individual aquifers – the valuable stores of groundwater which humans exploit with pumps – have been made previously, but the global picture of how quickly or directly Earth’s groundwater will respond to climate change in the coming years and decades has been uncertain. To investigate this, we mapped the connection between groundwater and the land surface and how groundwater response time varies across the world.
The long memory of groundwater
We found that below approximately three quarters of the Earth’s surface, groundwater response times last over 100 years. Recharge happens unevenly around the world so this actually represents around half of the active groundwater flow on Earth.
This means that in these areas, any changes to recharge currently occurring due to climate change will only be fully realised in changes to groundwater levels and discharge to surface ecosystems more than 100 years in the future.
We also found that, in general, the driest places on Earth have longer groundwater response times than more humid areas, meaning that groundwater stores beneath deserts take longer to fully respond to changes in recharge.
Click here for full article on Yahoo News UK